lunes, 8 de junio de 2015

¿Qué es la química?
La química es el estudio de la composición, estructura y propiedades de las sustancias materiales, de sus interacciones y de los efectos producidos sobre ellas al añadir o extraer energía en cualquiera de sus formas. Desde los primeros tiempos, los seres humanos han observado la transformación de las sustancias —la carne cocinándose, la madera quemándose, el hielo derritiéndose— y han especulado sobre sus causas. Siguiendo la historia de esas observaciones y especulaciones, se puede reconstruir la evolución gradual de las ideas y conceptos que han culminado en la química moderna.
Los primeros procesos químicos conocidos fueron realizados por los artesanos de Mesopotamia, Egipto y China. Al principio, los forjadores de esas tierras trabajaban con metales nativos como el oro y el cobre, que a veces se encontraban en la naturaleza en estado puro, pero rápidamente aprendieron a fundir menas (principalmente los óxidos metálicos y los sulfuros) calentándolas con madera o carbón de leña para obtener los metales. El uso progresivo del cobre, bronce y hierro dio origen a los nombres que los arqueólogos han aplicado a las distintas eras. En esas culturas se inició también una tecnología química primitiva, conforme los tintoreros descubrían métodos para fijar los tintes en los distintos tipos de tejidos y los alfareros aprendían a preparar barnices y más tarde a fabricar vidrio.

 Desde los tiempos de Tales de Mileto, unos 600 años a.C., los filósofos griegos empezaron a hacer especulaciones lógicas sobre el mundo físico, en lugar de confiar en los mitos para explicar los fenómenos. El mismo Tales pensaba que toda la materia procedía del agua, que podía solidificarse en tierra o evaporarse en aire. Sus sucesores ampliaron esta teoría en la idea de que el mundo estaba compuesto por cuatro elementos: tierra, agua, aire y fuego. Según Demócrito, esos elementos estaban compuestos por átomos, partículas diminutas que se movían en el vacío. Otros, especialmente Aristóteles, creían que los elementos formaban un medio continuo de materia y, por tanto, el vacío no podía existir. La idea atómica perdió terreno rápidamente, pero nunca fue completamente olvidada. Cuando fue revisada durante el renacimiento, formó la base de la teoría atómica moderna.

 La teoría de Aristóteles fue aceptada por los prácticos artesanos, especialmente en Alejandría, Egipto, que después del 300 a.C. se convirtió en el centro intelectual del mundo antiguo. Ellos pensaban que los metales de la Tierra tendían a ser cada vez más perfectos y a convertirse gradualmente en oro, y creían que podían realizar el mismo proceso más rápidamente en sus talleres, transmutando así de forma artificial los metales comunes en oro. Comenzando el año 100 de la era cristiana, esta idea dominaba la mente de los filósofos y los trabajadores del metal, y se escribió un gran número de tratados sobre el arte de la transmutación que empezaba a conocerse como alquimia. Aunque nadie consiguió hacer oro, en la búsqueda de la perfección de los metales se descubrieron muchos procesos químicos.

 avances condujeron en el siglo XVIII al descubrimiento de nuevos metales y sus compuestos y reacciones. Comenzaron a desarrollarse métodos analíticos cualitativos y cuantitativos, dando origen a la química analítica. Sin embargo, mientras existiera la creencia de que los gases sólo desempeñaban un papel físico, no podía reconocerse todo el alcance de la química.

El estudio químico de los gases, generalmente llamados ‘aires’, empezó a adquirir importancia después de que el fisiólogo británico Stephen Hales desarrollara la cubeta o cuba neumática para recoger y medir el volumen de los gases liberados en un sistema cerrado; los gases eran recogidos sobre el agua tras ser emitidos al calentar diversos sólidos. La cuba neumática se convirtió en un mecanismo valioso para recoger y estudiar gases no contaminados por el aire ordinario. El estudio de los gases avanzó rápidamente y se alcanzó un nuevo nivel de comprensión de los distintos gases.

Antoine Laurent de Lavoisier El químico francés Antoine Laurent de Lavoisier está considerado como el padre de la química moderna. Se interesó sobre todo por los experimentos que permitían medir la materia.Photo Researchers, Inc./Science Source 

La interpretación inicial del papel de los gases en la química se produjo en Edimburgo (Escocia) en 1756, cuando Joseph Black publicó sus estudios sobre las reacciones de los carbonatos de magnesio y de calcio. Al calentarlos, estos compuestos desprendían un gas y dejaban un residuo de lo que Black llamaba magnesia calcinada o cal (los óxidos). Esta última reaccionaba con el ‘álcali’ (carbonato de sodio) regenerando las sales originales. Así, el gas dióxido de carbono, que Black denominaba aire fijo, tomaba parte en las reacciones químicas (estaba “fijo”, según sus palabras). La idea de que un gas no podía entrar en una reacción química fue desechada, y pronto empezaron a reconocerse nuevos gases como sustancias distintas.

En la década siguiente, el físico británico Henry Cavendish aisló el ‘aire inflamable’ (hidrógeno). También introdujo el uso del mercurio en lugar del agua como el líquido sobre el que se recogían los gases, posibilitando la recogida de los gases solubles en agua. Esta variante fue utilizada con frecuencia por el químico y teólogo británico Joseph Priestley, quien recogió y estudió casi una docena de gases nuevos. El descubrimiento más importante de Priestley fue el oxígeno; pronto se dio cuenta de que este gas era el componente del aire ordinario responsable de la combustión, y que hacía posible la respiración animal. Sin embargo, su razonamiento fue que las sustancias combustibles ardían enérgicamente y los metales formaban escorias con más facilidad en este gas porque el gas no contenía flogisto. Por tanto, el gas aceptaba el flogisto presente en el combustible o el metal más fácilmente que el aire ordinario que ya contenía parte de flogisto. A este nuevo gas lo llamó ‘aire deflogistizado’ y defendió su teoría hasta el final de sus días.

Mientras tanto, la química había hecho grandes progresos en Francia, particularmente en el laboratorio de Lavoisier. A éste le preocupaba el hecho de que los metales ganaban peso al calentarlos en presencia de aire, cuando se suponía que estaban perdiendo flogisto.

En 1774, Priestley visitó Francia y le comentó a Lavoisier su descubrimiento del aire deflogistizado. Lavoisier entendió rápidamente el significado de esta sustancia, y este hecho abrió el camino para la revolución química que estableció la química moderna. Lavoisier lo llamó ‘oxígeno’, que significa ‘generador de ácidos’.

 El nacimiento de la química moderna
Lavoisier demostró con una serie de experimentos brillantes que el aire contiene un 20% de oxígeno y que la combustión es debida a la combinación de una sustancia combustible con oxígeno. Al quemar carbono se produce aire fijo (dióxido de carbono). Por tanto, el flogisto no existe. La teoría del flogisto fue sustituida rápidamente por la visión de que el oxígeno del aire combina con los elementos componentes de la sustancia combustible formando los óxidos de dichos elementos. Lavoisier utilizó la balanza de laboratorio para darle apoyo cuantitativo a su trabajo. Definió los elementos como sustancias que no pueden ser descompuestas por medios químicos, preparando el camino para la aceptación de la ley de conservación de la masa. Sustituyó el sistema antiguo de nombres químicos (basado en el uso alquímico) por la nomenclatura química racional utilizada hoy, y ayudó a fundar el primer periódico químico. Después de morir en la guillotina en 1794, sus colegas continuaron su trabajo estableciendo la química moderna. Un poco más tarde, el químico sueco Jöns Jakob Berzelius propuso representar los símbolos de los átomos de los elementos por la letra o par de letras iniciales de sus nombres.

 LOS SIGLOS XIX Y XX
A principios del siglo XIX, la precisión de la química analítica había mejorado tanto que los químicos podían demostrar que los compuestos simples con los que trabajaban contenían cantidades fijas e invariables de sus elementos constituyentes. Sin embargo, en ciertos casos, con los mismos elementos podía formarse más de un compuesto. Por esa época, el químico y físico francés Joseph Gay-Lussac demostró que los volúmenes de los gases reaccionantes están siempre en la relación de números enteros sencillos, es decir, la ley de las proporciones múltiples (que implica la interacción de partículas discontinuas o átomos). Un paso importante en la explicación de estos hechos fue, en 1803, la teoría atómica química del científico inglés John Dalton.
Dalton supuso que cuando se mezclaban dos elementos, el compuesto resultante contenía un átomo de cada uno. En su sistema, el agua podría tener una fórmula correspondiente a HO. Dalton asignó arbitrariamente al hidrógeno la masa atómica 1 y luego calculó la masa atómica relativa del oxígeno. Aplicando este principio a otros compuestos, calculó las masas atómicas de los elementos conocidos hasta entonces. Su teoría contenía muchos errores, pero la idea era correcta y se podía asignar un valor cuantitativo preciso a la masa de cada átomo.

  Teoría molecular
La teoría de Dalton no explicaba por completo la ley de las proporciones múltiples y no distinguía entre átomos y moléculas. Así, no podía distinguir entre las posibles fórmulas del agua HO y H2O2, ni podía explicar por qué la densidad del vapor de agua, suponiendo que su fórmula fuera HO, era menor que la del oxígeno, suponiendo que su fórmula fuera O. El físico italiano Amedeo Avogadro encontró la solución a esos problemas en 1811. Sugirió que a una temperatura y presión dadas, el número de partículas en volúmenes iguales de gases era el mismo, e introdujo también la distinción entre átomos y moléculas. Cuando el oxígeno se combinaba con hidrógeno, un átomo doble de oxígeno (molécula en nuestros términos) se dividía, y luego cada átomo de oxígeno se combinaba con dos átomos de hidrógeno, dando la fórmula molecular de H2O para el agua y O2 y H2 para las moléculas de oxígeno e hidrógeno, respectivamente.

Las ideas de Avogadro fueron ignoradas durante casi 50 años, tiempo en el que prevaleció una gran confusión en los cálculos de los químicos. En 1860 el químico italiano Stanislao Cannizzaro volvió a introducir la hipótesis de Avogadro. Por esta época, a los químicos les parecía más conveniente elegir la masa atómica del oxígeno, 16, como valor de referencia con el que relacionar las masas atómicas de los demás elementos, en lugar del valor 1 del hidrógeno, como había hecho Dalton. La masa molecular del oxígeno, 32, se usaba internacionalmente y se llamaba masa molecular del oxígeno expresada en gramos, o simplemente 1 mol de oxígeno. Los cálculos químicos se normalizaron y empezaron a escribirse fórmulas fijas.

El antiguo problema de la naturaleza de la afinidad química permanecía sin resolver. Durante un tiempo pareció que la respuesta podría estar en el campo de la electroquímica, descubierto recientemente. El descubrimiento en 1800 de la pila voltaica, la primera pila eléctrica real, proporcionó a los químicos una nueva herramienta que llevó al descubrimiento de metales como el sodio y el potasio. Berzelius opinaba que las fuerzas electrostáticas positivas y negativas podían mantener unidos a los elementos, y al principio sus teorías fueron aceptadas. Cuando los químicos empezaron a preparar y estudiar nuevos compuestos y reacciones en las que las fuerzas eléctricas parecían no estar implicadas (compuestos no polares), el problema de la afinidad fue postergado por un tiempo.

Nuevos campos de la química
 En el siglo XIX, los avances más sorprendentes de la química se produjeron en el área de la química orgánica. La teoría estructural, que proporcionaba una imagen de cómo se mantenían los átomos juntos, no era matemática, sino que empleaba su propia lógica. Ella hizo posible la predicción y preparación de muchos compuestos nuevos, incluyendo una gran cantidad de tintes, medicinas y explosivos importantes, que dieron origen a grandes industrias químicas, especialmente en Alemania.

Al mismo tiempo, aparecieron otras ramas de la química. Estimulados por los avances logrados en física, algunos químicos pensaron en aplicar métodos matemáticos a su ciencia. Los estudios de la velocidad de las reacciones culminaron en el desarrollo de las teorías cinéticas, que tenían valor tanto para la industria como para la ciencia pura. El reconocimiento de que el calor era debido al movimiento a escala atómica (un fenómeno cinético), hizo abandonar la idea de que el calor era una sustancia específica (denominada calórica) e inició el estudio de la termodinámica química. La extensión de los estudios electroquímicos llevó al químico sueco Svante August Arrhenius a postular la disociación de las sales en disolución para formar iones portadores de cargas eléctricas. Los estudios de los espectros de emisión y absorción de los elementos y compuestos empezaron a adquirir importancia tanto para los químicos como para los físicos, culminando en el desarrollo del campo de la espectroscopia. Además, comenzó una investigación fundamental sobre los coloides y la fotoquímica. A finales del siglo XIX, todos los estudios de este tipo fueron englobados en un campo conocido como química física.
La química inorgánica también necesitaba organizarse. Seguían descubriéndose nuevos elementos, pero no se había descubierto ningún método de clasificación que pudiera poner orden en sus reacciones. El sistema periódico, formulado a raíz de que el químico ruso Dmitri Ivánovich Mendeléiev en 1869 y el químico alemán Julius Lothar Meyer en 1870 elaboraran independientemente la ley periódica, eliminó esta confusión e indicó dónde se encontrarían los nuevos elementos y qué propiedades tendrían.

A finales del siglo XIX, la química, al igual que la física, parecía haber alcanzado un punto en el que no quedaba ningún campo sorprendente por desarrollar. Esta visión cambió completamente con el descubrimiento de la radiactividad. Los métodos químicos fueron utilizados para aislar nuevos elementos, como el radio, para separar nuevos tipos de sustancias conocidas como isótopos, y para sintetizar y aislar los nuevos elementos transuránicos. Los físicos consiguieron dibujar la estructura real de los átomos, que resolvía el antiguo problema de la afinidad química y explicaba la relación entre los compuestos polares y no polares.  

Otro avance importante de la química en el siglo XX fue la fundación de la bioquímica; empezó simplemente con el análisis de los fluidos corporales, pero pronto se desarrollaron métodos para determinar la naturaleza y función de los componentes celulares más complejos. Hacia la mitad del siglo, los bioquímicos habían aclarado el código genético y explicado la función de los genes, base de toda la vida. El campo había crecido tanto que su estudio culminó en una nueva ciencia, la biología molecular.

  Investigaciones recientes en química
Los recientes avances en biotecnología y ciencia de los materiales están ayudando a definir las fronteras de la investigación química. En biotecnología se ha podido iniciar un esfuerzo internacional para ordenar en serie el genoma humano gracias a instrumentos analíticos sofisticados. Probablemente, el éxito de este proyecto cambiará la naturaleza de campos como la biología molecular y la medicina. La ciencia de los materiales, una combinación interdisciplinaria de física, química e ingeniería, dirige el diseño de los materiales y mecanismos avanzados. Ejemplos recientes son el descubrimiento de ciertos compuestos cerámicos que mantienen su superconductividad a temperaturas por debajo de -196 ºC, el desarrollo de polímeros emisores de luz y la enorme diversidad de compuestos que surgieron de la investigación sobre el buckminsterfullereno.

Incluso en los campos convencionales de la investigación química, las nuevas herramientas analíticas están suministrando detalles sin precedentes sobre los productos químicos y sus reacciones. Por ejemplo, las técnicas de láser proporcionan información instantánea de reacciones químicas en fase gaseosa a una escala de femtosegundos (una milésima de una billonésima de segundo).


 La industria química

El crecimiento de las industrias químicas y la formación de químicos profesionales ha tenido una correlación interesante. Hasta hace unos 150 años, los químicos no recibían formación profesional. La química avanzaba gracias al trabajo de los que se interesaban en el tema, pero éstos no hacían ningún esfuerzo sistemático por formar a nuevos trabajadores en ese campo. Los médicos y los aficionados con recursos contrataban a veces ayudantes, de los cuales sólo unos pocos continuaban la labor de su maestro.

Sin embargo, a principios del siglo XIX se modificó este sistema casual de educación química. En Alemania, país con una larga tradición de investigación, se empezaron a crear universidades provinciales. En Giessen, el químico alemán Justus von Liebig fundó un centro de investigación química. Este primer laboratorio de enseñanza tuvo tanto éxito que atrajo a estudiantes de todo el mundo. Poco después le siguieron otras universidades alemanas.

Así, se empezó a formar a un gran grupo de químicos jóvenes en la época en que las industrias químicas comenzaban a explotar los nuevos descubrimientos. Esta explotación comenzó durante la Revolución Industrial; por ejemplo, el método Leblanc para la producción de sosa —uno de los primeros procesos de producción a gran escala— fue desarrollado en Francia en 1791 y comercializado en Gran Bretaña a principios de 1823. Los laboratorios de esas industrias en franco desarrollo podían emplear a los estudiantes de química recién formados y también podían contar con los profesores de la universidad como asesores. Esta interacción entre las universidades y la industria química benefició a ambas, y el rápido crecimiento de la industria de la química orgánica hacia finales del siglo XIX dio origen a los grandes consorcios tintoreros y farmacéuticos que otorgaron a Alemania el predominio científico en ese campo hasta la I Guerra Mundial.

Después de la guerra, el sistema alemán fue introducido en todas las naciones industriales del mundo, y la química y las industrias químicas progresaron aún más rápidamente. Entre otros desarrollos industriales recientes se encuentra el incremento del uso de los procesos de reacción que utilizan enzimas, debido principalmente a los bajos costos y altos beneficios que pueden conseguirse. En la actualidad las industrias están estudiando métodos que utilizan la ingeniería genética para producir microorganismos con propósitos industriales.

   La química y la sociedad
 La química ha tenido una influencia enorme sobre la vida humana. En otras épocas las técnicas químicas se utilizaban para aislar productos naturales y para encontrar nuevas formas de utilizarlos. En el siglo XIX se desarrollaron técnicas para sintetizar sustancias nuevas que eran mejores que las naturales, o que podían reemplazarlas por completo con gran ahorro. Al aumentar la complejidad de los compuestos sintetizados, empezaron a aparecer materiales totalmente nuevos para usos modernos. Se crearon nuevos plásticos y tejidos, y también fármacos que acababan con todo tipo de enfermedades. Al mismo tiempo empezaron a unirse ciencias que antes estaban totalmente separadas. Los físicos, biólogos y geólogos habían desarrollado sus propias técnicas y su forma de ver el mundo, pero en un momento dado se hizo evidente que cada ciencia, a su modo, era el estudio de la materia y sus cambios. La química era la base de todas ellas. La creación de disciplinas intercientíficas como la geoquímica o la bioquímica ha estimulado a todas las ciencias originales.



El progreso de la ciencia en los últimos años ha sido espectacular, aunque los beneficios de este progreso han acarreado los riesgos correspondientes. Los peligros más evidentes proceden de los materiales radiactivos, por su potencial para producir cáncer en los individuos expuestos y mutaciones en sus hijos. También se ha hecho evidente que la acumulación, en las plantas o células animales, de pesticidas (que antes se consideraban inocuos), o de productos secundarios de los procesos de fabricación, suele tener efectos nocivos. Este descubrimiento, lentamente reconocido al principio, ha llevado a establecer nuevos campos de estudio relacionados con el medio ambiente y con la ecología en general.




No hay comentarios:

Publicar un comentario